Back to Search Start Over

Success probability for selectively neutral invading species in the line model with a random fitness landscape

Authors :
Farhang-Sardroodi, Suzan
Komarova, Natalia L.
Michelen, Marcus
Pemantle, Robin
Source :
Stud. Appl. Math. 2021; 1- 27
Publication Year :
2020

Abstract

We consider a spatial (line) model for invasion of a population by a single mutant with a stochastically selectively neutral fitness landscape, independent from the fitness landscape for non-mutants. This model is similar to those considered in Farhang-Sardroodi et al. [PLOS Comput. Biol., 13(11), 2017; J. R. Soc. Interface, 16(157), 2019]. We show that the probability of mutant fixation in a population of size $N$, starting from a single mutant, is greater than $1/N$, which would be the case if there were no variation in fitness whatsoever. In the small variation regime, we recover precise asymptotics for the success probability of the mutant. This demonstrates that the introduction of randomness provides an advantage to minority mutations in this model, and shows that the advantage increases with the system size. We further demonstrate that the mutants have an advantage in this setting only because they are better at exploiting unusually favorable environments when they arise, and not because they are any better at exploiting pockets of favorability in an environment that is selectively neutral overall.<br />Comment: 25 pages, 4 figures

Details

Database :
arXiv
Journal :
Stud. Appl. Math. 2021; 1- 27
Publication Type :
Report
Accession number :
edsarx.2005.13491
Document Type :
Working Paper
Full Text :
https://doi.org/10.1111/sapm.12373