Back to Search
Start Over
Isotopically resolved neutron total cross sections at intermediate energies
- Source :
- Phys. Rev. C 102, 034601 (2020)
- Publication Year :
- 2020
-
Abstract
- The neutron total cross sections $\sigma_{tot}$ of $^{16,18}$O, $^{58,64}$Ni, $^{103}$Rh, and $^{112,124}$Sn have been measured at the Los Alamos Neutron Science Center (LANSCE) from low to intermediate energies (3 $\leq E_{lab} \leq$ 450 MeV) by leveraging waveform-digitizer technology. The $\sigma_{tot}$ relative differences between isotopes are presented, revealing additional information about the isovector components needed for an accurate optical-model description away from stability. Digitizer-enabled $\sigma_{tot}$-measurement techniques are discussed and a series of uncertainty-quantified dispersive optical model (DOM) analyses using these new data is presented, validating the use of the DOM for modeling light systems ($^{16,18}$O) and systems with open neutron shells ($^{58,64}$Ni and $^{112,124}$Sn). The valence-nucleon spectroscopic factors extracted for each isotope reaffirm the usefulness of high-energy proton reaction cross sections for characterizing depletion from the mean-field expectation.<br />Comment: 28 pages, 20 figures
- Subjects :
- Nuclear Experiment
Nuclear Theory
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. C 102, 034601 (2020)
- Publication Type :
- Report
- Accession number :
- edsarx.2006.00024
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevC.102.034601