Back to Search Start Over

Computationally efficient optimal control for unstable power system models

Authors :
Uddin, Mahtab
Uddin, M. Monir
Khan, Md. Abdul Hakim
Publication Year :
2020

Abstract

In this article, the focus is mainly on gaining the optimal control for the unstable power system models and stabilizing them through the Riccati-based feedback stabilization process with sparsity-preserving techniques. We are to find the solution of the Continuous-time Algebraic Riccati Equations (CAREs) governed from the unstable power system models derived from the Brazilian Inter-Connected Power System (BIPS) models, which are large-scale sparse index-1 descriptor systems. We propose the projection-based Rational Krylov Subspace Method (RKSM) for the iterative computation of the solution of the CAREs. The novelties of RKSM are sparsity-preserving computations and the implementation of time-convenient adaptive shift parameters. We modify the Low-Rank Cholesky-Factor integrated Alternating Direction Implicit (LRCF-ADI) technique based nested iterative Kleinman-Newton (KN) method to a sparse form and adjust this to solve the desired CAREs. We compare the results achieved by the Kleinman-Newton method with that of using the RKSM. The applicability and adaptability of the proposed techniques are justified numerically with MATLAB simulations. Transient behaviors of the target models are investigated for comparative analysis through the tabular and graphical approaches.<br />Comment: 28 pages, 15 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2006.14210
Document Type :
Working Paper