Back to Search
Start Over
On the degeneration of asymptotically conical Calabi-Yau metrics
- Publication Year :
- 2020
-
Abstract
- We study the degenerations of asymptotically conical Ricci-flat K\"ahler metrics as the K\"ahler class degenerates to a semi-positive class. We show that under appropriate assumptions, the Ricci-flat K\"ahler metrics converge to a incomplete smooth Ricci-flat K\"ahler metric away from a compact subvariety. As a consequence, we construct singular Calabi-Yau metrics with asymptotically conical behaviour at infinity on certain quasi-projective varieties and we show that the metric geometry of these singular metrics are homeomorphic to the topology of the singular variety. Finally, we will apply our results to study several classes of examples of geometric transitions between Calabi-Yau manifolds.<br />Comment: 40 pages
- Subjects :
- Mathematics - Differential Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2006.15752
- Document Type :
- Working Paper