Back to Search Start Over

A Comprehensive Evaluation of Multi-task Learning and Multi-task Pre-training on EHR Time-series Data

Authors :
McDermott, Matthew B. A.
Nestor, Bret
Kim, Evan
Zhang, Wancong
Goldenberg, Anna
Szolovits, Peter
Ghassemi, Marzyeh
Publication Year :
2020

Abstract

Multi-task learning (MTL) is a machine learning technique aiming to improve model performance by leveraging information across many tasks. It has been used extensively on various data modalities, including electronic health record (EHR) data. However, despite significant use on EHR data, there has been little systematic investigation of the utility of MTL across the diverse set of possible tasks and training schemes of interest in healthcare. In this work, we examine MTL across a battery of tasks on EHR time-series data. We find that while MTL does suffer from common negative transfer, we can realize significant gains via MTL pre-training combined with single-task fine-tuning. We demonstrate that these gains can be achieved in a task-independent manner and offer not only minor improvements under traditional learning, but also notable gains in a few-shot learning context, thereby suggesting this could be a scalable vehicle to offer improved performance in important healthcare contexts.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2007.10185
Document Type :
Working Paper