Back to Search Start Over

HInet: Generating neutral hydrogen from dark matter with neural networks

Authors :
Wadekar, Digvijay
Villaescusa-Navarro, Francisco
Ho, Shirley
Perreault-Levasseur, Laurence
Source :
ApJ 916 42 (2021)
Publication Year :
2020

Abstract

Upcoming 21cm surveys will map the spatial distribution of cosmic neutral hydrogen (HI) over very large cosmological volumes. In order to maximize the scientific return of these surveys, accurate theoretical predictions are needed. Hydrodynamic simulations currently are the most accurate tool to provide those predictions in the mildly to non-linear regime. Unfortunately, their computational cost is very high: tens of millions of CPU hours. We use convolutional neural networks to find the mapping between the spatial distribution of matter from N-body simulations and HI from the state-of-the-art hydrodynamic simulation IllustrisTNG. Our model performs better than the widely used theoretical model: Halo Occupation Distribution (HOD) for all statistical properties up to the non-linear scales $k\lesssim1$ h/Mpc. Our method allows the generation of 21cm mocks over very big cosmological volumes with similar properties as hydrodynamic simulations.<br />Comment: 10+5 pages, 7+3 figures. Added supplementary figures and sections to the Appendix for clarification, conclusions unchanged. Version appearing in ApJ

Details

Database :
arXiv
Journal :
ApJ 916 42 (2021)
Publication Type :
Report
Accession number :
edsarx.2007.10340
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/ac033a