Back to Search Start Over

OpenRooms: An End-to-End Open Framework for Photorealistic Indoor Scene Datasets

Authors :
Li, Zhengqin
Yu, Ting-Wei
Sang, Shen
Wang, Sarah
Song, Meng
Liu, Yuhan
Yeh, Yu-Ying
Zhu, Rui
Gundavarapu, Nitesh
Shi, Jia
Bi, Sai
Xu, Zexiang
Yu, Hong-Xing
Sunkavalli, Kalyan
Hašan, Miloš
Ramamoorthi, Ravi
Chandraker, Manmohan
Publication Year :
2020

Abstract

We propose a novel framework for creating large-scale photorealistic datasets of indoor scenes, with ground truth geometry, material, lighting and semantics. Our goal is to make the dataset creation process widely accessible, transforming scans into photorealistic datasets with high-quality ground truth for appearance, layout, semantic labels, high quality spatially-varying BRDF and complex lighting, including direct, indirect and visibility components. This enables important applications in inverse rendering, scene understanding and robotics. We show that deep networks trained on the proposed dataset achieve competitive performance for shape, material and lighting estimation on real images, enabling photorealistic augmented reality applications, such as object insertion and material editing. We also show our semantic labels may be used for segmentation and multi-task learning. Finally, we demonstrate that our framework may also be integrated with physics engines, to create virtual robotics environments with unique ground truth such as friction coefficients and correspondence to real scenes. The dataset and all the tools to create such datasets will be made publicly available.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2007.12868
Document Type :
Working Paper