Back to Search Start Over

Twist Angle Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures

Authors :
Choi, Junho
Florian, Matthias
Steinhoff, Alexander
Erben, Daniel
Tran, Kha
Kim, Dong Seob
Sun, Liuyang
Quan, Jiamin
Claassen, Robert
Majumder, Somak
Hollingsworth, Jennifer A.
Taniguchi, Takashi
Watanabe, Kenji
Ueno, Keiji
Singh, Akshay
Moody, Galan
Jahnke, Frank
Li, Xiaoqin
Source :
Phys. Rev. Lett. 126, 047401 (2021)
Publication Year :
2020

Abstract

In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in $\text{MoSe}_{\text{2}}$/$\text{WSe}_{\text{2}}$ twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1$^\circ$ to 3.5$^\circ$. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moir\'e potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of "twistronics".

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 126, 047401 (2021)
Publication Type :
Report
Accession number :
edsarx.2007.15196
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.126.047401