Back to Search Start Over

Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet

Authors :
Zahn, Daniela
Jakobs, Florian
Windsor, Yoav William
Seiler, Hélène
Vasileiadis, Thomas
Butcher, Tim A.
Qi, Yingpeng
Engel, Dieter
Atxitia, Unai
Vorberger, Jan
Ernstorfer, Ralph
Source :
Phys. Rev. Research 3, 023032 (2021)
Publication Year :
2020

Abstract

The ultrafast dynamics of magnetic order in a ferromagnet are governed by the interplay between electronic, magnetic and lattice degrees of freedom. In order to obtain a microscopic understanding of ultrafast demagnetization, information on the response of all three subsystems is required. A consistent description of demagnetization and microscopic energy flow, however, is still missing. Here, we combine a femtosecond electron diffraction study of the ultrafast lattice response of nickel to laser excitation with ab initio calculations of the electron-phonon interaction and energy-conserving atomistic spin dynamics simulations. Our model is in agreement with the observed lattice dynamics and previously reported electron and magnetization dynamics. Our approach reveals that the spin system is the dominating heat sink in the initial few hundreds of femtoseconds and implies a transient non-thermal state of the spins. Our results provide a clear picture of the microscopic energy flow between electronic, magnetic and lattice degrees of freedom on ultrafast timescales and constitute a foundation for theoretical descriptions of demagnetization that are consistent with the dynamics of all three subsystems.

Details

Database :
arXiv
Journal :
Phys. Rev. Research 3, 023032 (2021)
Publication Type :
Report
Accession number :
edsarx.2008.04611
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevResearch.3.023032