Back to Search
Start Over
On the weighted average number of subgroups of ${\mathbb {Z}}_{m}\times {\mathbb {Z}}_{n}$ with $mn\leq x$
- Publication Year :
- 2020
-
Abstract
- Let $\mathbb{Z}_{m}$ be the additive group of residue classes modulo $m$. For any positive integers $m$ and $n$, let $s(m,n)$ and $c(m,n)$ denote the total number of subgroups and cyclic subgroups of the group ${\mathbb{Z}}_{m}\times {\mathbb{Z}}_{n}$, respectively. Define $$ \widetilde{D}_{s}(x) = \sum_{mn\leq x}s(m,n)\log\frac{x}{mn} \quad \quad \widetilde{D}_{c}(x) = \sum_{mn\leq x}c(m,n)\log\frac{x}{mn}. $$ In this paper, we study the asymptotic behaviour of functions $\widetilde{D}_{s}(x)$ and $\widetilde{D}_{c}(x)$.<br />Comment: 9 pages
- Subjects :
- Mathematics - Number Theory
11A25, 11N37, 11Y60
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2008.07850
- Document Type :
- Working Paper