Back to Search Start Over

On the weighted average number of subgroups of ${\mathbb {Z}}_{m}\times {\mathbb {Z}}_{n}$ with $mn\leq x$

Authors :
Kiuchi, Isao
Eddin, Sumaia Saad
Publication Year :
2020

Abstract

Let $\mathbb{Z}_{m}$ be the additive group of residue classes modulo $m$. For any positive integers $m$ and $n$, let $s(m,n)$ and $c(m,n)$ denote the total number of subgroups and cyclic subgroups of the group ${\mathbb{Z}}_{m}\times {\mathbb{Z}}_{n}$, respectively. Define $$ \widetilde{D}_{s}(x) = \sum_{mn\leq x}s(m,n)\log\frac{x}{mn} \quad \quad \widetilde{D}_{c}(x) = \sum_{mn\leq x}c(m,n)\log\frac{x}{mn}. $$ In this paper, we study the asymptotic behaviour of functions $\widetilde{D}_{s}(x)$ and $\widetilde{D}_{c}(x)$.<br />Comment: 9 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2008.07850
Document Type :
Working Paper