Back to Search
Start Over
Geodesic scattering on hyperboloids and Kn\'orrer's map
- Publication Year :
- 2020
-
Abstract
- We use the results of Moser and Kn\"orrer on relations between geodesics on quadrics and solutions of the classical Neumann system to describe explicitly the geodesic scattering on hyperboloids. We explain the relation of Kn\"orrer's reparametrisation with projectively equivalent metrics on quadrics introduced by Tabachnikov and independently by Matveev and Topalov, giving a new proof of their result. We show that the projectively equivalent metric is regular on the projective closure of hyperboloids and extend Kn\"orrer's map to this closure.<br />Comment: 27 pages, 5 figures
- Subjects :
- Mathematics - Differential Geometry
37J35, 53C22
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2008.12524
- Document Type :
- Working Paper