Back to Search
Start Over
Symplectic birational transformations of finite order on O'Grady's sixfolds
- Source :
- Kyoto J. Math. 63 (2023), no. 3, 615--639
- Publication Year :
- 2020
-
Abstract
- We prove that any symplectic automorphism of finite order on a manifold of type OG6 acts trivially on the Beauville--Bogomolov--Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.<br />Comment: Final version, to appear on Kyoto J. Math
- Subjects :
- Mathematics - Algebraic Geometry
14J42 (14J50 14E07)
Subjects
Details
- Database :
- arXiv
- Journal :
- Kyoto J. Math. 63 (2023), no. 3, 615--639
- Publication Type :
- Report
- Accession number :
- edsarx.2009.02120
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1215/21562261-10577928