Back to Search Start Over

Symplectic birational transformations of finite order on O'Grady's sixfolds

Authors :
Grossi, Annalisa
Onorati, Claudio
Veniani, Davide Cesare
Source :
Kyoto J. Math. 63 (2023), no. 3, 615--639
Publication Year :
2020

Abstract

We prove that any symplectic automorphism of finite order on a manifold of type OG6 acts trivially on the Beauville--Bogomolov--Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.<br />Comment: Final version, to appear on Kyoto J. Math

Details

Database :
arXiv
Journal :
Kyoto J. Math. 63 (2023), no. 3, 615--639
Publication Type :
Report
Accession number :
edsarx.2009.02120
Document Type :
Working Paper
Full Text :
https://doi.org/10.1215/21562261-10577928