Back to Search
Start Over
Packing $A$-paths of length zero modulo a prime
- Source :
- J. Combin. Theory Ser. B 160 (2023), 114-143
- Publication Year :
- 2020
-
Abstract
- It is known that $A$-paths of length $0$ mod $m$ satisfy the Erd\H{o}s-P\'osa property if $m=2$ or $m=4$, but not if $m > 4$ is composite. We show that if $p$ is prime, then $A$-paths of length $0$ mod $p$ satisfy the Erd\H{o}s-P\'osa property. More generally, in the framework of undirected group-labelled graphs, we characterize the abelian groups $\Gamma$ and elements $\ell \in \Gamma$ for which the Erd\H{o}s-P\'osa property holds for $A$-paths of weight $\ell$.
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Combin. Theory Ser. B 160 (2023), 114-143
- Publication Type :
- Report
- Accession number :
- edsarx.2009.12230
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jctb.2022.12.007