Back to Search Start Over

The Buchweitz set of a numerical semigroup

Authors :
Eliahou, S.
García-García, J. I.
Marín-Aragón, D.
Vigneron-Tenorio, A.
Publication Year :
2020

Abstract

Let $A \subset {\mathbb Z}$ be a finite subset. We denote by $\mathcal{B}(A)$ the set of all integers $n \ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\mathcal{B}(A)$ stems from Buchweitz's discovery in 1980 that if a numerical semigroup $S \subseteq {\mathbb N}$ is a Weierstrass semigroup, then $\mathcal{B}({\mathbb N} \setminus S) = \emptyset$. By constructing instances where this condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz (1893). In this paper, we prove that for any numerical semigroup $S \subset {\mathbb N}$ of genus $g \ge 2$, the set $\mathcal{B}({\mathbb N} \setminus S) $ is finite, of unbounded cardinality as $S$ varies.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2011.09187
Document Type :
Working Paper