Back to Search
Start Over
The Buchweitz set of a numerical semigroup
- Publication Year :
- 2020
-
Abstract
- Let $A \subset {\mathbb Z}$ be a finite subset. We denote by $\mathcal{B}(A)$ the set of all integers $n \ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\mathcal{B}(A)$ stems from Buchweitz's discovery in 1980 that if a numerical semigroup $S \subseteq {\mathbb N}$ is a Weierstrass semigroup, then $\mathcal{B}({\mathbb N} \setminus S) = \emptyset$. By constructing instances where this condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz (1893). In this paper, we prove that for any numerical semigroup $S \subset {\mathbb N}$ of genus $g \ge 2$, the set $\mathcal{B}({\mathbb N} \setminus S) $ is finite, of unbounded cardinality as $S$ varies.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2011.09187
- Document Type :
- Working Paper