Back to Search Start Over

Tur\'an numbers and anti-Ramsey numbers for short cycles in complete $3$-partite graphs

Authors :
Fang, Chunqiu
Győri, Ervin
Xiao, Chuanqi
Xiao, Jimeng
Publication Year :
2020

Abstract

We call a $4$-cycle in $K_{n_{1}, n_{2}, n_{3}}$ multipartite, denoted by $C_{4}^{\text{multi}}$, if it contains at least one vertex in each part of $K_{n_{1}, n_{2}, n_{3}}$. The Tur\'an number $\text{ex}(K_{n_{1},n_{2},n_{3}}, C_{4}^{\text{multi}})$ $\bigg($ respectively, $\text{ex}(K_{n_{1},n_{2},n_{3}},\{C_{3}, C_{4}^{\text{multi}}\})$ $\bigg)$ is the maximum number of edges in a graph $G\subseteq K_{n_{1},n_{2},n_{3}}$ such that $G$ contains no $C_{4}^{\text{multi}}$ $\bigg($ respectively, $G$ contains neither $C_{3}$ nor $C_{4}^{\text{multi}}$ $\bigg)$. We call a $C^{multi}_4$ rainbow if all four edges of it have different colors. The ant-Ramsey number $\text{ar}(K_{n_{1},n_{2},n_{3}}, C_{4}^{\text{multi}})$ is the maximum number of colors in an edge-colored of $K_{n_{1},n_{2},n_{3}}$ with no rainbow $C_{4}^{\text{multi}}$. In this paper, we determine that $\text{ex}(K_{n_{1},n_{2},n_{3}}, C_{4}^{\text{multi}})=n_{1}n_{2}+2n_{3}$ and $\text{ar}(K_{n_{1},n_{2},n_{3}}, C_{4}^{\text{multi}})=\text{ex}(K_{n_{1},n_{2},n_{3}}, \{C_{3}, C_{4}^{\text{multi}}\})+1=n_{1}n_{2}+n_{3}+1,$ where $n_{1}\ge n_{2}\ge n_{3}\ge 1.$

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2011.13715
Document Type :
Working Paper