Back to Search Start Over

On non-surjective word maps on $\mathrm{PSL}_{2}(\mathbb{F}_{q})$

Authors :
Biswas, Arindam
Saha, Jyoti Prakash
Publication Year :
2020

Abstract

Jambor--Liebeck--O'Brien showed that there exist non-proper-power word maps which are not surjective on $\mathrm{PSL}_{2}(\mathbb{F}_{q})$ for infinitely many $q$. This provided the first counterexamples to a conjecture of Shalev which stated that if a two-variable word is not a proper power of a non-trivial word, then the corresponding word map is surjective on $\mathrm{PSL}_2(\mathbb{F}_{q})$ for all sufficiently large $q$. Motivated by their work, we construct new examples of these types of non-surjective word maps. As an application, we obtain non-surjective word maps on the absolute Galois group of $\mathbb Q$.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2012.01408
Document Type :
Working Paper