Back to Search
Start Over
Star Formation in a Strongly Magnetized Cloud
- Publication Year :
- 2021
-
Abstract
- We study star formation in the Center Ridge 1 (CR1) clump in the Vela C giant molecular cloud, selected as a high column density region that shows the lowest level of dust continuum polarization angle dispersion, likely indicating that the magnetic field is relatively strong. We observe the source with the ALMA 7m-array at 1.05~mm and 1.3~mm wavelengths, which enable measurements of dust temperature, core mass and astrochemical deuteration. A relatively modest number of eleven dense cores are identified via their dust continuum emission, with masses spanning from 0.17 to 6.7 Msun. Overall CR1 has a relatively low compact dense gas fraction compared with other typical clouds with similar column densities, which may be a result of the strong magnetic field and/or the very early evolutionary stage of this region. The deuteration ratios, Dfrac, of the cores, measured with N2H+(3-2) and N2D+(3-2) lines, span from 0.011 to 0.85, with the latter being one of the highest values yet detected. The level of deuteration appears to decrease with evolution from prestellar to protostellar phase. A linear filament, running approximately parallel with the large scale magnetic field orientation, is seen connecting the two most massive cores, each having CO bipolar outflows aligned orthogonally to the filament. The filament contains the most deuterated core, likely to be prestellar and located midway between the protostars. The observations permit measurement of the full deuteration structure of the filament along its length, which we present. We also discuss the kinematics and dynamics of this structure, as well as of the dense core population.<br />Comment: 25 pages, 17 figures, accepted by ApJ
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2101.01326
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3847/1538-4357/ac043c