Back to Search Start Over

Linear Instability of Shock-Dominated Laminar Hypersonic Separated Flows

Authors :
Sawant, Saurabh S.
Tumuklu, Ozgur
Theofilis, Vassilis
Levin, Deborah A.
Publication Year :
2021

Abstract

The self-excited spanwise homogeneous perturbations arising in shock-wave/boundary-layer interaction (SWBLI) system formed in a hypersonic flow of molecular nitrogen over a double wedge are investigated using the kinetic Direct Simulation Monte Carlo (DSMC) method. The flow has transitional Knudsen and unit Reynolds numbers of 3.4 x 10$^{-3}$ and 5.2 x 10$^4$ m$^{-1}$, respectively. Strong thermal nonequilibrium exists downstream of the Mach 7 detached (bow) shock generated due to the upper wedge surface. A linear instability mechanism is expected to make the pre-computed 2-D base flow potentially unstable under spanwise perturbations. The specific intent is to assess the growth rates of unstable modes, the wavelength, location, and origin of spanwise periodic flow structures, and the characteristic frequencies present in this interaction.<br />Comment: 10 pages, 6 figures. To appear in the proceedings of the IUTAM Transition 2019

Subjects

Subjects :
Physics - Fluid Dynamics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2101.03688
Document Type :
Working Paper