Sorry, I don't understand your search. ×
Back to Search Start Over

COVIDHunter: An Accurate, Flexible, and Environment-Aware Open-Source COVID-19 Outbreak Simulation Model

Authors :
Alser, Mohammed
Kim, Jeremie S.
Alserr, Nour Almadhoun
Tell, Stefan W.
Mutlu, Onur
Publication Year :
2021

Abstract

Background: Early detection and isolation of COVID-19 patients are essential for successful implementation of mitigation strategies and eventually curbing the disease spread. With a limited number of daily COVID-19 tests performed in every country, simulating the COVID-19 spread along with the potential effect of each mitigation strategy currently remains one of the most effective ways in managing the healthcare system and guiding policy-makers. Methods: We introduce COVIDHunter, a flexible and accurate COVID-19 outbreak simulation model that evaluates the current mitigation measures that are applied to a region and provides suggestions on what strength the upcoming mitigation measure should be. The key idea of COVIDHunter is to quantify the spread of COVID-19 in a geographical region by simulating the average number of new infections caused by an infected person considering the effect of external factors, such as environmental conditions (e.g., climate, temperature, humidity) and mitigation measures. Results: Using Switzerland as a case study, COVIDHunter estimates that if the policy-makers relax the mitigation measures by 50% for 30 days then both the daily capacity need for hospital beds and daily number of deaths increase exponentially by an average of 5.1x, who may occupy ICU beds and ventilators for a period of time. Unlike existing models, the COVIDHunter model accurately monitors and predicts the daily number of cases, hospitalizations, and deaths due to COVID-19. Our model is flexible to configure and simple to modify for modeling different scenarios under different environmental conditions and mitigation measures. Availability: We release the source code of the COVIDHunter implementation at https://github.com/CMU- SAFARI/COVIDHunter and show how to flexibly configure our model for any scenario and easily extend it for different measures and conditions than we account for.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2102.03667
Document Type :
Working Paper