Back to Search
Start Over
Bregman Finito/MISO for nonconvex regularized finite sum minimization without Lipschitz gradient continuity
- Source :
- SIAM J Optim 32(3):2230-2262 (2022)
- Publication Year :
- 2021
-
Abstract
- We introduce two algorithms for nonconvex regularized finite sum minimization, where typical Lipschitz differentiability assumptions are relaxed to the notion of relative smoothness. The first one is a Bregman extension of Finito/MISO, studied for fully nonconvex problems when the sampling is randomized, or under convexity of the nonsmooth term when it is essentially cyclic. The second algorithm is a low-memory variant, in the spirit of SVRG and SARAH, that also allows for fully nonconvex formulations. Our analysis is made remarkably simple by employing a Bregman Moreau envelope as Lyapunov function. In the randomized case, linear convergence is established when the cost function is strongly convex, yet with no convexity requirements on the individual functions in the sum. For the essentially cyclic and low-memory variants, global and linear convergence results are established when the cost function satisfies the Kurdyka-\L ojasiewicz property.
- Subjects :
- Mathematics - Optimization and Control
90C06, 90C25, 90C26, 49J52, 49J53
Subjects
Details
- Database :
- arXiv
- Journal :
- SIAM J Optim 32(3):2230-2262 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2102.10312
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1137/21M140376X