Back to Search
Start Over
GPT Understands, Too
- Publication Year :
- 2021
-
Abstract
- Prompting a pretrained language model with natural language patterns has been proved effective for natural language understanding (NLU). However, our preliminary study reveals that manual discrete prompts often lead to unstable performance -- e.g., changing a single word in the prompt might result in substantial performance drop. We propose a novel method P-Tuning that employs trainable continuous prompt embeddings in concatenation with discrete prompts. Empirically, P-Tuning not only stabilizes training by minimizing the gap between various discrete prompts, but also improves performance by a sizeable margin on a wide range of NLU tasks including LAMA and SuperGLUE. P-Tuning is generally effective for both frozen and tuned language models, under both the fully-supervised and few-shot settings.
- Subjects :
- Computer Science - Computation and Language
Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2103.10385
- Document Type :
- Working Paper