Back to Search
Start Over
Multipath-based SLAM using Belief Propagation with Interacting Multiple Dynamic Models
- Publication Year :
- 2021
-
Abstract
- In this paper, we present a Bayesian multipath-based simultaneous localization and mapping (SLAM) algorithm that continuously adapts interacting multiple models (IMM) parameters to describe the mobile agent state dynamics. The time-evolution of the IMM parameters is described by a Markov chain and the parameters are incorporated into the factor graph structure that represents the statistical structure of the SLAM problem. The proposed belief propagation (BP)-based algorithm adapts, in an online manner, to time-varying system models by jointly inferring the model parameters along with the agent and map feature states. The performance of the proposed algorithm is finally evaluating with a simulated scenario. Our numerical simulation results show that the proposed multipath-based SLAM algorithm is able to cope with strongly changing agent state dynamics.<br />Comment: 5 pages, 4 figures. To be published in Proc. EuCAP-21
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2103.12809
- Document Type :
- Working Paper