Back to Search Start Over

SILCC VI -- Multi-phase ISM structure, stellar clustering, and outflows with supernovae, stellar winds, ionising radiation and cosmic rays

Authors :
Rathjen, Tim-Eric
Naab, Thorsten
Girichidis, Philipp
Walch, Stefanie
Wünsch, Richard
Dinnbier, František
Seifried, Daniel
Klessen, Ralf S.
Glover, Simon C. O.
Publication Year :
2021

Abstract

We present simulations of the multi-phase interstellar medium (ISM) at solar neighbourhood conditions including thermal and non-thermal ISM processes, star cluster formation, and feedback from massive stars: stellar winds, hydrogen ionising radiation computed with the novel TreeRay radiative transfer method, supernovae (SN), and the injection of cosmic rays (CR). N-body dynamics is computed with a 4th-order Hermite integrator. We systematically investigate the impact of stellar feedback on the self-gravitating ISM with magnetic fields, CR advection and diffusion and non-equilibrium chemical evolution. SN-only feedback results in strongly clustered star formation with very high star cluster masses, a bi-modal distribution of the ambient SN densities, and low volume-filling factors (VFF) of warm gas, typically inconsistent with local conditions. Early radiative feedback prevents an initial starburst, reduces star cluster masses and outflow rates. Furthermore, star formation rate surface densities of $\Sigma_{\dot{M}_\star} = 1.4-5.9 \times 10^{-3}$ $\mathrm{M}_\odot\,\mathrm{yr}^{-1}\,\mathrm{kpc}^{-2}$, VFF$_\mathrm{warm} = 60-80$ per cent as well as thermal, kinetic, magnetic, and cosmic ray energy densities of the model including all feedback mechanisms agree well with observational constraints. On the short, 100 Myr, timescales investigated here, CRs only have a moderate impact on star formation and the multi-phase gas structure and result in cooler outflows, if present. Our models indicate that at low gas surface densities SN-only feedback only captures some characteristics of the star-forming ISM and outflows/inflows relevant for regulating star formation. Instead, star formation is regulated on star cluster scales by radiation and winds from massive stars in clusters, whose peak masses agree with solar neighbourhood estimates.<br />Comment: 23 pages, 16 figures, accepted by MNRAS, corrected an incorrect reference

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2103.14128
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stab900