Back to Search Start Over

High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes

Authors :
Boscheri, Walter
Dimarco, Giacomo
Publication Year :
2021

Abstract

In this work, we present a family of time and space high order finite volume schemes for the solution of the full Boltzmann equation. The velocity space is approximated by using a discrete ordinate approach while the collisional integral is solved by spectral methods. The space reconstruction is realized by integrating the distribution function, describing the state of the system, over arbitrary shaped and closed control volumes using a Central Weighted ENO (CWENO) technique. Compared to other reconstruction methods, this approach permits to keep compact stencil sizes which is a remarkable property in the context of kinetic equations due to the considerable demand of computational resources. The full discretization is then obtained by combining the previous phase-space approximation with high order Implicit-Explicit (IMEX) Runge Kutta schemes. These methods guarantee stability, accuracy and preservation of the asymptotic state. Comparisons of the Boltzmann model with simpler relaxation type kinetic models (like BGK) is proposed showing the capability of the Boltzmann equation to capture different physical solutions. The theoretical order of convergence is numerically measured in different regimes and the methods are tested on several standard two-dimensional benchmark problems in comparison with Direct Simulation Monte Carlo results. The article ends with a prototype engineering problem consisting of a subsonic and a supersonic flow around a NACA 0012 airfoil. All test cases are run with MPI parallelization on several threads, thus making the proposed methods suitable for parallel distributed memory supercomputers.

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2103.14890
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.cma.2021.114180