Back to Search
Start Over
Sentence-Permuted Paragraph Generation
- Publication Year :
- 2021
-
Abstract
- Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, decoding, and candidate ranking in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.<br />Comment: EMNLP 2021 (long paper)
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2104.07228
- Document Type :
- Working Paper