Back to Search Start Over

Waveform Design for Joint Sensing and Communications in Millimeter-Wave and Low Terahertz Bands

Authors :
Mao, Tianqi
Chen, Jiaxuan
Wang, Qi
Han, Chong
Wang, Zhaocheng
Karagiannidis, George K.
Publication Year :
2021

Abstract

The convergence of sensing and communication in the millimeter-wave (mmWave) and low terahertz (THz) bands has been envisioned as a promising technology, since it incorporates high-rate data transmission of hundreds of Gbps and mm-level radar sensing in a spectrum- and cost-efficient manner, by sharing both the frequency and hardware resources. However, the joint radar sensing and communication (JRC) system faces considerable challenges in the mmWave and low-THz scale, due to the peculiarities of the propagation channel and radio-frequency (RF) front ends. To this end, the waveform design for the JRC systems in mmWave and low-THz bands with ultra-broad bandwidth is investigated in this paper. Firstly, by considering the JRC design based on the co-existence concept, where both functions operate in a time-domain duplex (TDD) manner, a novel multi-subband quasi-perfect (MS-QP) sequence, composed of multiple perfect subsequences on different subbands, is proposed for target sensing, which achieves accurate target ranging and velocity estimation, whilst only requiring cost-efficient low-rate analog-to-digital converters (A/Ds) for sequence detection. Furthermore, the root index of each perfect subsequence is designed to eliminate the influence of strong Doppler shift on radar sensing. Finally, a data-embedded MS-QP (DE-MS-QP) waveform is constructed through time-domain extension of the MS-QP sequence, generating null frequency points on each subband for data transmission. Unlike the co-existence-based JRC system in TDD manner, the proposed DE-MS-QP waveform enables simultaneous interference-free sensing and communication, whilst inheriting all the merits from MS-QP sequences. Numerical results validate the superiority of the proposed waveforms regarding the communication and sensing performances, hardware cost as well as flexibility of the resource allocation between the dual functions.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2106.01549
Document Type :
Working Paper