Back to Search Start Over

AI without networks

Authors :
Mitra, Partha P
Sire, Clément
Publication Year :
2021

Abstract

Contemporary Artificial Intelligence (AI) stands on two legs: large training data corpora and many-parameter artificial neural networks (ANNs). The data corpora are needed to represent the complexity and heterogeneity of the world. The role of the networks is less transparent due to the obscure dependence of the network parameters and outputs on the training data and inputs. This raises problems, ranging from technical-scientific to legal-ethical. We hypothesize that a transparent approach to machine learning is possible without using networks at all. By generalizing a parameter-free, statistically consistent data interpolation method, which we analyze theoretically in detail, we develop a network-free framework for AI incorporating generative modeling. We demonstrate this framework with examples from three different disciplines - ethology, control theory, and mathematics. Our generative Hilbert framework applied to the trajectories of small groups of swimming fish outperformed state-of-the-art traditional mathematical behavioral models and current ANN-based models. We demonstrate pure data interpolation based control by stabilizing an inverted pendulum and a driven logistic map around unstable fixed points. Finally, we present a mathematical application by predicting zeros of the Riemann Zeta function, achieving comparable performance as a transformer network. We do not suggest that the proposed framework will always outperform networks as over-parameterized networks can interpolate. However, our framework is theoretically sound, transparent, deterministic, and parameter free: remarkably, it does not require any compute-expensive training, does not involve optimization, has no model selection, and is easily reproduced and ported. We also propose an easily computed method of credit assignment based on this framework, to help address ethical-legal challenges raised by generative AI.<br />Comment: 47 pages with 8 figures + 33 pages supplementary with 7 figures and one table (total 80 pages)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2106.03354
Document Type :
Working Paper