Back to Search
Start Over
Fermions on wobbling kinks: normal versus quasinormal modes
- Publication Year :
- 2021
-
Abstract
- The system consisting of a fermion in the background of a wobbling kink is studied in this paper. To investigate the impact of the wobbling on the fermion-kink interaction, we employ the time-dependent perturbation theory formalism in quantum mechanics. To do so, we compute the transition probabilities between states given in terms of the Bogoliubov coefficients. We derive Fermi's golden rule for the model, which allows the transition to the continuum at a constant rate if the fermion-kink coupling constant is smaller than the wobbling frequency. Moreover, we study the system replacing the shape mode with a quasinormal mode. In this case, the transition rate to continuum decays in time due to the leakage of the mode, and the final transition probability decreases sharply for large coupling constants in a way that is analogous to Fermi's golden rule. Throughout the paper, we compare the perturbative results with numerical simulations and show that they are in good agreement.<br />Comment: Accepted for publication in JHEP
- Subjects :
- High Energy Physics - Theory
Nonlinear Sciences - Pattern Formation and Solitons
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2106.04712
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/JHEP09(2021)103