Back to Search Start Over

Central limit theorem for kernel estimator of invariant density in bifurcating Markov chains models

Authors :
Penda, S. Valère Bitseki
Delmas, Jean-François
Publication Year :
2021

Abstract

Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. Motivated by the functional estimation of the density of the invariant probability measure which appears as the asymptotic distribution of the trait, we prove the consistence and the Gaussian fluctuations for a kernel estimator of this density based on late generations. In this setting, it is interesting to note that the distinction of the three regimes on the ergodic rate identified in a previous work (for fluctuations of average over large generations) disappears. This result is a first step to go beyond the threshold condition on the ergodic rate given in previous statistical papers on functional estimation.<br />Comment: 40 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:2012.04741; text overlap with arXiv:2106.07711

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2106.08626
Document Type :
Working Paper