Back to Search
Start Over
The Galaxy Activity, Torus and Outflow Survey (GATOS): II. Torus and polar dust emission in nearby Seyfert galaxies
- Publication Year :
- 2021
-
Abstract
- We compare mid-IR and ALMA far-IR images of 12 nearby Seyferts selected from GATOS. The mid-IR unresolved emission contributes more than 60% of the nuclear emission in most galaxies. By contrast, the ALMA 870micron continuum emission is mostly resolved and typically along the torus equatorial direction (Paper I, Garcia-Burillo et al. 2021). The Eddington ratios and nuclear hydrogen column densities NH of half the sample are favorable to launching polar and/or equatorial dusty winds, according to simulations. Six show mid-IR extended emission in the polar direction as traced by the NLR and perpendicular to the ALMA emission. In a few, the nuclear NH might be too high to uplift large quantities of dusty material along the polar direction. Five galaxies have low NH and/or Eddington ratios and thus polar dusty winds are not likely. We generate new CAT3D-WIND disk-wind model images. At low wind-to-disk cloud ratios the far-IR model images have disk- and ring-like morphologies. The X-shape associated with dusty winds is seen better in the far-IR at intermediate-high inclinations for the extended-wind configurations. In most models, the mid-IR emission comes from the inner part of the disk/cone. Extended bi-conical and one-sided polar mid-IR emission is seen in extended-wind configurations and high wind-to-disk cloud ratios. When convolved to our resolution, the model images reproduce qualitative aspects of the observed morphologies. Low-intermediate wind-to-disk ratios are required to account for the large fractions of unresolved mid-IR emission. This work and Paper I provide observational support for the torus+wind scenario. The wind component is more relevant at high Eddington ratios and/or AGN luminosities, and polar dust emission is predicted at NH of up to $10^{24}$cm$^{-2}$. The torus/disk component, on the other hand, prevails at low luminosities and/or Eddington ratios. (Abridged)<br />Comment: 27 pages, 27 figures. Accepted for publication in A&A
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2107.00244
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/202141219