Back to Search
Start Over
Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity
- Publication Year :
- 2021
-
Abstract
- The Jordan--Moore--Gibson--Thompson (JMGT) equation is a well-established and recently widely studied model for nonlinear acoustics (NLA). It is a third-order (in time) semilinear Partial Differential Equation (PDE) model with the distinctive feature of predicting the propagation of ultrasound waves at \textit{finite} speed due to heat phenomenon know as \textit{second sound} which leads to the hyperbolic character of heat propagation. In this paper, we consider the problem of stabilizability of the linear (known as) MGT--equation. We consider a special geometry that is suitable for studying the problem of controlling (from the boundary) the acoustic pressure involved in medical treatments like lithotripsy, thermotherapy, sonochemistry, or any other procedures using High Intensity Focused Ultrasound (HIFU).
- Subjects :
- Mathematics - Analysis of PDEs
35LXX
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2107.09978
- Document Type :
- Working Paper