Back to Search Start Over

Continuous time limit of the stochastic ensemble Kalman inversion: Strong convergence analysis

Authors :
Blömker, Dirk
Schillings, Claudia
Wacker, Philipp
Weissmann, Simon
Publication Year :
2021

Abstract

The Ensemble Kalman inversion (EKI) method is a method for the estimation of unknown parameters in the context of (Bayesian) inverse problems. The method approximates the underlying measure by an ensemble of particles and iteratively applies the ensemble Kalman update to evolve (the approximation of the) prior into the posterior measure. For the convergence analysis of the EKI it is common practice to derive a continuous version, replacing the iteration with a stochastic differential equation. In this paper we validate this approach by showing that the stochastic EKI iteration converges to paths of the continuous-time stochastic differential equation by considering both the nonlinear and linear setting, and we prove convergence in probability for the former, and convergence in moments for the latter. The methods employed can also be applied to the analysis of more general numerical schemes for stochastic differential equations in general.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2107.14508
Document Type :
Working Paper