Back to Search
Start Over
Towards a Better Understanding Human Reading Comprehension with Brain Signals
- Publication Year :
- 2021
-
Abstract
- Reading comprehension is a complex cognitive process involving many human brain activities. Plenty of works have studied the patterns and attention allocations of reading comprehension in information retrieval related scenarios. However, little is known about what happens in human brain during reading comprehension and how these cognitive activities can affect information retrieval process. Additionally, with the advances in brain imaging techniques such as electroencephalogram (EEG), it is possible to collect brain signals in almost real time and explore whether it can be utilized as feedback to facilitate information acquisition performance. In this paper, we carefully design a lab-based user study to investigate brain activities during reading comprehension. Our findings show that neural responses vary with different types of reading contents, i.e., contents that can satisfy users' information needs and contents that cannot. We suggest that various cognitive activities, e.g., cognitive loading, semantic-thematic understanding, and inferential processing, underpin these neural responses at the micro-time scale during reading comprehension. From these findings, we illustrate several insights for information retrieval tasks, such as ranking models construction and interface design. Besides, we suggest the possibility of detecting reading comprehension status for a proactive real-world system. To this end, we propose a Unified framework for EEG-based Reading Comprehension Modeling (UERCM). To verify its effectiveness, we conduct extensive experiments based on EEG features for two reading comprehension tasks: answer sentence classification and answer extraction. Results show that it is feasible to improve the performance of two tasks with brain signals.<br />Comment: Accepted by The Web Conference 2022 (WWW'22) as a full paper
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2108.01360
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1145/3485447.3511966