Back to Search Start Over

The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

Authors :
Alexeev, M. G.
Alexeev, G. D.
Amoroso, A.
Andrieux, V.
Anosov, V.
Augsten, K.
Augustyniak, W.
Azevedo, C. D. R.
Badelek, B.
Balestra, F.
Ball, M.
Barth, J.
Beck, R.
Bedfer, Y.
Antequera, J. Berenguer
Bernhard, J.
Bodlak, M.
Bradamante, F.
Bressan, A.
Burtsev, V. E.
Chang, W. -C.
Chatterjee, C.
Chiosso, M.
Chumakov, A. G.
Chung, S. -U.
Cicuttin, A.
Correia, P. M. M.
Crespo, M. L.
D'Ago, D.
Torre, S. Dalla
Dasgupta, S. S.
Dasgupta, S.
Denisenko, I.
Denisov, O. Yu.
Donskov, S. V.
Doshita, N.
Dreisbach, Ch.
Duennweber, W.
Dusaev, R. R.
Efremov, A.
Eremeev, D.
Eversheim, P. D.
Faccioli, P.
Faessler, M.
Finger, M.
Finger jr., M.
Fischer, H.
Floethner, K.
Franco, C.
Friedrich, J. M.
Frolov, V.
Ordonez, L. G. Garcia
Gautheron, F.
Gavrichtchouk, O. P.
Gerassimov, S.
Giarra, J.
Giordano, D.
Gorzellik, M.
Grasso, A.
Gridin, A.
Perdekamp, M. Grosse
Grube, B.
Guskov, A.
Haas, F.
von Harrach, D.
Hoffmann, M.
Heitz, R.
Horikawa, N.
d'Hose, N.
Hsieh, C. -Y.
Huber, S.
Ishimoto, S.
Ivanov, A.
Iwata, T.
Jandek, M.
Jary, T.
Joosten, R.
Kabuss, E.
Kaspar, F.
Kerbizi, A.
Ketzer, B.
Khaustov, G. V.
Khokhlov, Yu. A.
Kisselev, Yu.
Klein, F.
Koivuniemi, J. H.
Kolosov, V. N.
Konorov, I.
Konstantinov, V. F.
Kotzinian, A. M.
Kouznetsov, O. M.
Koval, A.
Kral, Z.
Krinner, F.
Kulinich, Y.
Kunne, F.
Kurek, K.
Kurjata, R. P.
Kveton, A.
Lavickova, K.
Levorato, S.
Lian, Y. -S.
Lichtenstadt, J.
Lin, P. -J.
Longo, R.
Lyubovitskij, V. E.
Maggiora, A.
Magnon, A.
Makins, N.
Makke, N.
Mallot, G. K.
Maltsev, A.
Mamon, S. A.
Marianski, B.
Martin, A.
Marzec, J.
Matousek, J.
Matsuda, T.
Mattson, G.
Metzger, F.
Meyer, M.
Meyer, W.
Mikhailov, Yu. V.
Mikhasenko, M.
Mitrofanov, E.
Miyachi, Y.
Moretti, A.
Nagaytsev, A.
Naim, C.
Neyret, D.
Novy, J.
Nowak, W. -D.
Nukazuka, G.
Olshevsky, A. G.
Ostrick, M.
Panzieri, D.
Parsamyan, B.
Paul, S.
Pekeler, H.
Peng, J. -C.
Pesek, M.
Peshekhonov, D. V.
Peskova, M.
Pierre, N.
Platchkov, S.
Pochodzalla, J.
Polyakov, V. A.
Pretz, J.
Quaresma, M.
Quintans, C.
Reicherz, G.
Riedl, C.
Rudnicki, T.
Ryabchikov, D. I.
Rymbekova, A.
Rychter, A.
Samoylenko, V. D.
Sandacz, A.
Sarkar, S.
Savin, I. A.
Sbrizzai, G.
Schmeing, S.
Schmieden, H.
Selyunin, A.
Sharko, K.
Sinha, L.
Slunecka, M.
Srnka, A.
Steffen, D.
Stolarski, M.
Subrt, O.
Sulc, M.
Suzuki, H.
Tessaro, S.
Tessarotto, F.
Thiel, A.
Tomsa, J.
Tosello, F.
Townsend, A.
Tskhay, V.
Triloki, T.
Uhl, S.
Vauth, A.
Veit, B. M.
Veloso, J.
Ventura, B.
Vidon, A.
Virius, M.
Wagner, M.
Wallner, S.
Zaremba, K.
Zavertyaev, M.
Zemko, M.
Zemlyanichkina, E.
Zhao, Y.
Ziembicki, M.
Source :
Phys.Rev.D 105 (2022) 1, 012005
Publication Year :
2021

Abstract

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

Details

Database :
arXiv
Journal :
Phys.Rev.D 105 (2022) 1, 012005
Publication Type :
Report
Accession number :
edsarx.2108.01744
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevD.105.012005