Back to Search Start Over

Local existence and uniqueness for a fractional SIRS model with Mittag-Leffler law

Authors :
Ammi, Moulay Rchid Sidi
Tahiri, Mostafa
Torres, Delfim F. M.
Source :
Gen. Lett. Math. 10 (2021), no. 2, 61--71
Publication Year :
2021

Abstract

In this paper, we study an epidemic model with Atangana-Baleanu-Caputo (ABC) fractional derivatives. We obtain a special solution using an iterative scheme via Laplace transformation. Uniqueness and existence of solution using the Banach fixed point theorem are studied. A detailed analysis of the stability of the special solution is presented. Finally, our generalized model in the ABC derivative sense is solved numerically by the Adams-Bashforth-Moulton method.<br />Comment: This is a preprint of a Research Article published at [https://doi.org/10.31559/glm2021.10.2.7]. Cite this paper as: M. R. Sidi Ammi, M. Tahiri and D. F. M. Torres, Local existence and uniqueness for a fractional SIRS model with Mittag-Leffler law, Gen. Lett. Math. 10 (2021), no. 2, 61--71

Details

Database :
arXiv
Journal :
Gen. Lett. Math. 10 (2021), no. 2, 61--71
Publication Type :
Report
Accession number :
edsarx.2108.08673
Document Type :
Working Paper
Full Text :
https://doi.org/10.31559/glm2021.10.2.7