Back to Search
Start Over
Local existence and uniqueness for a fractional SIRS model with Mittag-Leffler law
- Source :
- Gen. Lett. Math. 10 (2021), no. 2, 61--71
- Publication Year :
- 2021
-
Abstract
- In this paper, we study an epidemic model with Atangana-Baleanu-Caputo (ABC) fractional derivatives. We obtain a special solution using an iterative scheme via Laplace transformation. Uniqueness and existence of solution using the Banach fixed point theorem are studied. A detailed analysis of the stability of the special solution is presented. Finally, our generalized model in the ABC derivative sense is solved numerically by the Adams-Bashforth-Moulton method.<br />Comment: This is a preprint of a Research Article published at [https://doi.org/10.31559/glm2021.10.2.7]. Cite this paper as: M. R. Sidi Ammi, M. Tahiri and D. F. M. Torres, Local existence and uniqueness for a fractional SIRS model with Mittag-Leffler law, Gen. Lett. Math. 10 (2021), no. 2, 61--71
Details
- Database :
- arXiv
- Journal :
- Gen. Lett. Math. 10 (2021), no. 2, 61--71
- Publication Type :
- Report
- Accession number :
- edsarx.2108.08673
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.31559/glm2021.10.2.7