Back to Search
Start Over
Light-field microscopy with correlated beams for extended volumetric imaging at the diffraction limit
- Publication Year :
- 2021
-
Abstract
- Light-field microscopy represents a promising solution for microscopic volumetric imaging, thanks to its capability to encode information on multiple planes in a single acquisition. This is achieved through its peculiar simultaneous capture of information on light spatial distribution and propagation direction. However, state-of-the-art light-field microscopes suffer from a detrimental loss of spatial resolution compared to standard microscopes. We propose and experimentally demonstrate a light-field microscopy architecture based on light intensity correlation, in which resolution is limited only by diffraction. We demonstrate the effectiveness of our technique in refocusing three-dimensional test targets and biological samples out of the focused plane. We improve the depth of field by a factor 6 with respect to conventional microscopy, at the same resolution, and obtain, from one acquired correlation image, about $130,000$ images, all seen from different perspectives; such multi-perspective images are employed to reconstruct over $40$ planes within a $1 \,\mathrm{mm}^3$ sample with a diffraction-limited resolution voxel of $20 \times 20 \times 30\ \mu\mathrm{m}^3$.<br />Comment: 14 pages, 10 figures
- Subjects :
- Physics - Optics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2110.00807
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41598-022-21240-1