Back to Search Start Over

Chirality locking charge density waves in a chiral crystal

Authors :
Li, Geng
Yang, Haitao
Jiang, Peijie
Wang, Cong
Cheng, Qiuzhen
Tian, Shangjie
Han, Guangyuan
Lei, Hechang
Shen, Chengmin
Lin, Xiao
Ji, Wei
Wang, Ziqiang
Gao, Hong-Jun
Publication Year :
2021

Abstract

In Weyl semimetals, charge density wave (CDW) order can spontaneously break the chiral symmetry, gap out the Weyl nodes, and drive the material into the axion insulating phase. Investigations have however been limited since CDWs are rarely seen in Weyl semimetals. Here, using scanning tunneling microscopy/spectroscopy, we report the discovery of a novel unidirectional CDW order on the (001) surface of chiral crystal CoSi - a unique Weyl semimetal with unconventional chiral fermions. The CDW is incommensurate with both lattice momentum and crystalline symmetry directions, and exhibits an intra unit cell {\pi} phase shift in the layer stacking direction. The tunneling spectrum shows a particle-hole asymmetric V-shaped energy gap around the Fermi level that modulates spatially with the CDW wave vector. Combined with first-principle calculations, we identify that the CDW is locked to the crystal chirality and is related by a mirror reflection between the two enantiomers of the chiral crystal. Our findings reveal a novel correlated topological quantum state in chiral CoSi crystals and raise the potential for realizing an axion insulator and exploring the unprecedented physical behaviors of unconventional chiral fermions.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2110.07813
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41467-022-30612-0