Back to Search
Start Over
Projection-Free Algorithm for Stochastic Bi-level Optimization
- Publication Year :
- 2021
-
Abstract
- This work presents the first projection-free algorithm to solve stochastic bi-level optimization problems, where the objective function depends on the solution of another stochastic optimization problem. The proposed $\textbf{S}$tochastic $\textbf{Bi}$-level $\textbf{F}$rank-$\textbf{W}$olfe ($\textbf{SBFW}$) algorithm can be applied to streaming settings and does not make use of large batches or checkpoints. The sample complexity of SBFW is shown to be $\mathcal{O}(\epsilon^{-3})$ for convex objectives and $\mathcal{O}(\epsilon^{-4})$ for non-convex objectives. Improved rates are derived for the stochastic compositional problem, which is a special case of the bi-level problem, and entails minimizing the composition of two expected-value functions. The proposed $\textbf{S}$tochastic $\textbf{C}$ompositional $\textbf{F}$rank-$\textbf{W}$olfe ($\textbf{SCFW}$) is shown to achieve a sample complexity of $\mathcal{O}(\epsilon^{-2})$ for convex objectives and $\mathcal{O}(\epsilon^{-3})$ for non-convex objectives, at par with the state-of-the-art sample complexities for projection-free algorithms solving single-level problems. We demonstrate the advantage of the proposed methods by solving the problem of matrix completion with denoising and the problem of policy value evaluation in reinforcement learning.<br />Comment: 34 Pages
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2110.11721
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/TSP.2023.3234462