Back to Search
Start Over
Solution of Large-Scale Supply Chain Models using Graph Sampling & Coarsening
- Publication Year :
- 2021
-
Abstract
- We present a graph sampling and coarsening scheme (gSC) for computing lower and upper bounds for large-scale supply chain models. An edge sampling scheme is used to build a low-complexity problem that is used to finding an approximate (but feasible) solution for the original model and to compute a lower bound (for a maximization problem). This scheme is similar in spirit to the so-called sample average approximation scheme, which is widely used for the solution of stochastic programs. A graph coarsening (aggregation) scheme is used to compute an upper bound and to estimate the optimality gap of the approximate solution. The coarsening scheme uses node sampling to select a small set of support nodes that are used to guide node/edge aggregation and we show that the coarsened model provides a relaxation of the original model and a valid upper bound. We provide numerical evidence that gSC can yield significant improvements in solution time and memory usage over state-of-the-art solvers. Specifically, we study a supply chain design model (a mixed-integer linear program) that contains over 38 million variables and show that gSC finds a solution with an optimality gap of <0.5% in less than 22 minutes.<br />Comment: 23 pages, 12 figures
- Subjects :
- Mathematics - Optimization and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2111.01249
- Document Type :
- Working Paper