Back to Search Start Over

Word Embeddings via Causal Inference: Gender Bias Reducing and Semantic Information Preserving

Authors :
Ding, Lei
Yu, Dengdeng
Xie, Jinhan
Guo, Wenxing
Hu, Shenggang
Liu, Meichen
Kong, Linglong
Dai, Hongsheng
Bao, Yanchun
Jiang, Bei
Publication Year :
2021

Abstract

With widening deployments of natural language processing (NLP) in daily life, inherited social biases from NLP models have become more severe and problematic. Previous studies have shown that word embeddings trained on human-generated corpora have strong gender biases that can produce discriminative results in downstream tasks. Previous debiasing methods focus mainly on modeling bias and only implicitly consider semantic information while completely overlooking the complex underlying causal structure among bias and semantic components. To address these issues, we propose a novel methodology that leverages a causal inference framework to effectively remove gender bias. The proposed method allows us to construct and analyze the complex causal mechanisms facilitating gender information flow while retaining oracle semantic information within word embeddings. Our comprehensive experiments show that the proposed method achieves state-of-the-art results in gender-debiasing tasks. In addition, our methods yield better performance in word similarity evaluation and various extrinsic downstream NLP tasks.<br />Comment: Accepted by AAAI 2022

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2112.05194
Document Type :
Working Paper