Back to Search
Start Over
Ascendance of Superconductivity in Magic-Angle Graphene Multilayers
- Publication Year :
- 2021
-
Abstract
- Graphene moire superlattices have emerged as a platform hosting and abundance of correlated insulating, topological, and superconducting phases. While the origins of strong correlations and non-trivial topology are shown to be directly linked to flat moire bands, the nature and mechanism of superconductivity remain enigmatic. In particular, only alternating twisted stacking geometries of bilayer and trilayer graphene are found to exhibit robust superconductivity manifesting as zero resistance and Fraunhofer interference patterns. Here we demonstrate that magic-angle twisted tri-, quadri-, and pentalayers placed on monolayer tungsten diselenide exhibit flavour polarization and superconductivity. We also observe insulating states in the trilayer and quadrilayer arising at finite electric displacement fields, despite the presence of dispersive bands introduced by additional graphene layers. Moreover, the three multilayer geometries allow us to identify universal features in the family of graphene moire structures arising from the intricate relations between superconducting states, symmetry-breaking transitions, and van Hove singularities. Remarkably, as the number of layers increases, superconductivity emerges over a dramatically enhanced filling-factor range. In particular, in twisted pentalayers, superconductivity extends well beyond the filling of four electrons per moire unit cell, demonstrating the non-trivial role of the additional bands. Our results highlight the importance of the interplay between flat and dispersive bands in extending superconducting regions in graphene moire superlattices and open new frontiers for developing graphene-based superconductors.<br />Comment: main text (4 figures) and supplementary information (12 figures)
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2112.09270
- Document Type :
- Working Paper