Back to Search Start Over

Beyond Low Earth Orbit: Biomonitoring, Artificial Intelligence, and Precision Space Health

Authors :
Scott, Ryan T.
Antonsen, Erik L.
Sanders, Lauren M.
Hastings, Jaden J. A.
Park, Seung-min
Mackintosh, Graham
Reynolds, Robert J.
Hoarfrost, Adrienne L.
Sawyer, Aenor
Greene, Casey S.
Glicksberg, Benjamin S.
Theriot, Corey A.
Berrios, Daniel C.
Miller, Jack
Babdor, Joel
Barker, Richard
Baranzini, Sergio E.
Beheshti, Afshin
Chalk, Stuart
Delgado-Aparicio, Guillermo M.
Haendel, Melissa
Hamid, Arif A.
Heller, Philip
Jamieson, Daniel
Jarvis, Katelyn J.
Kalantari, John
Khezeli, Kia
Komarova, Svetlana V.
Komorowski, Matthieu
Kothiyal, Prachi
Mahabal, Ashish
Manor, Uri
Martin, Hector Garcia
Mason, Christopher E.
Matar, Mona
Mias, George I.
Myers, Jr., Jerry G.
Nelson, Charlotte
Oribello, Jonathan
Parsons-Wingerter, Patricia
Prabhu, R. K.
Qutub, Amina Ann
Rask, Jon
Saravia-Butler, Amanda
Saria, Suchi
Singh, Nitin Kumar
Soboczenski, Frank
Snyder, Michael
Soman, Karthik
Van Valen, David
Venkateswaran, Kasthuri
Warren, Liz
Worthey, Liz
Yang, Jason H.
Zitnik, Marinka
Costes, Sylvain V.
Publication Year :
2021

Abstract

Human space exploration beyond low Earth orbit will involve missions of significant distance and duration. To effectively mitigate myriad space health hazards, paradigm shifts in data and space health systems are necessary to enable Earth-independence, rather than Earth-reliance. Promising developments in the fields of artificial intelligence and machine learning for biology and health can address these needs. We propose an appropriately autonomous and intelligent Precision Space Health system that will monitor, aggregate, and assess biomedical statuses; analyze and predict personalized adverse health outcomes; adapt and respond to newly accumulated data; and provide preventive, actionable, and timely insights to individual deep space crew members and iterative decision support to their crew medical officer. Here we present a summary of recommendations from a workshop organized by the National Aeronautics and Space Administration, on future applications of artificial intelligence in space biology and health. In the next decade, biomonitoring technology, biomarker science, spacecraft hardware, intelligent software, and streamlined data management must mature and be woven together into a Precision Space Health system to enable humanity to thrive in deep space.<br />Comment: 31 pages, 4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2112.12554
Document Type :
Working Paper