Back to Search
Start Over
Finite quotients of abelian varieties with a Calabi-Yau resolution
- Source :
- Journal de l'\'Ecole polytechnique -- Math\'ematiques, Volume 11 (2024), pp. 1219-1286
- Publication Year :
- 2022
-
Abstract
- Let $A$ be an abelian variety, and $G \subset Aut(A)$ a finite group acting freely in codimension two. We discuss whether the singular quotient $A/G$ admits a resolution that is a Calabi-Yau manifold. While Oguiso constructed two examples in dimension $3$, we show that there are none in dimension $4$. We also classify up to isogeny the possible abelian varieties $A$ in arbitrary dimension.<br />Comment: [v1]: 54 pages, including the programs in the 6-page-long Appendix. [v2]: final version, updated after referee report. Theorem 1.5 is slightly more general now
- Subjects :
- Mathematics - Algebraic Geometry
Mathematics - Group Theory
Subjects
Details
- Database :
- arXiv
- Journal :
- Journal de l'\'Ecole polytechnique -- Math\'ematiques, Volume 11 (2024), pp. 1219-1286
- Publication Type :
- Report
- Accession number :
- edsarx.2201.00619
- Document Type :
- Working Paper