Back to Search Start Over

Finite quotients of abelian varieties with a Calabi-Yau resolution

Authors :
Gachet, Cécile
Source :
Journal de l'\'Ecole polytechnique -- Math\'ematiques, Volume 11 (2024), pp. 1219-1286
Publication Year :
2022

Abstract

Let $A$ be an abelian variety, and $G \subset Aut(A)$ a finite group acting freely in codimension two. We discuss whether the singular quotient $A/G$ admits a resolution that is a Calabi-Yau manifold. While Oguiso constructed two examples in dimension $3$, we show that there are none in dimension $4$. We also classify up to isogeny the possible abelian varieties $A$ in arbitrary dimension.<br />Comment: [v1]: 54 pages, including the programs in the 6-page-long Appendix. [v2]: final version, updated after referee report. Theorem 1.5 is slightly more general now

Details

Database :
arXiv
Journal :
Journal de l'\'Ecole polytechnique -- Math\'ematiques, Volume 11 (2024), pp. 1219-1286
Publication Type :
Report
Accession number :
edsarx.2201.00619
Document Type :
Working Paper