Back to Search
Start Over
Probing of nonlinear hybrid optomechanical systems via partial accessibility
- Source :
- Phys. Rev. Research 4, 033036 (2022)
- Publication Year :
- 2022
-
Abstract
- Hybrid optomechanical systems are emerging as a fruitful architecture for quantum technologies. Hence, determining the relevant atom-light and light-mechanics couplings is an essential task in such systems. The fingerprint of these couplings is left in the global state of the system during non-equilibrium dynamics. However, in practice, performing measurements on the entire system is not feasible, and thus, one has to rely on partial access to one of the subsystems, namely the atom, the light, or the mechanics. Here, we perform a comprehensive analysis to determine the optimal subsystem for probing the couplings. We find that if the light-mechanics coupling is known or irrelevant, depending on the range of the qubit-light coupling, then the optimal subsystem can be either light or the qubit. In other scenarios, e.g., simultaneous estimation of the couplings, the light is usually the optimal subsystem. This can be explained as light is the mediator between the other two subsystems. Finally, we show that the widely used homodyne detection can extract a fair fraction of the information about the couplings from the light degrees of freedom.<br />Comment: 10 pages, 2 appendices, 9 figures. Feedback is welcome
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. Research 4, 033036 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2201.01784
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevResearch.4.033036