Back to Search
Start Over
Finite Element Approximation of Invariant Manifolds by the Parameterization Method
- Publication Year :
- 2022
-
Abstract
- We combine the parameterization method for invariant manifolds with the finite element method for elliptic PDEs,to obtain a new computational framework for high order approximation of invariant manifolds attached to unstable equilibrium solutions of nonlinear parabolic PDEs. The parameterization method provides an infinitesimal invariance equation for the invariant manifold, which we solve via a power series ansatz. A power matching argument leads to a recursive system of linear elliptic PDEs -- the so-called homological equations -- whose solutions are the power series coefficients of the parameterization. The homological equations are solved recursively to any desired order using finite element approximation. The end result is a polynomial expansion for a chart map of the manifold, with coefficients in an appropriate finite element space. We implement the method for a variety of example problems having both polynomial and non-polynomial nonlinearities, on non-convex two-dimensional polygonal domains (not necessary simply connected), for equilibrium solutions with Morse indices one and two. We implement a-posteriori error indicators which provide numerical evidence in support of the claim that the manifolds are computed accurately.
- Subjects :
- Mathematics - Dynamical Systems
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2203.03115
- Document Type :
- Working Paper