Back to Search Start Over

Cosmology from the vacuum

Authors :
Antonini, Stefano
Simidzija, Petar
Swingle, Brian
Van Raamsdonk, Mark
Publication Year :
2022

Abstract

We argue that standard tools of holography can be used to describe fully non-perturbative microscopic models of cosmology in which a period of accelerated expansion may result from the positive potential energy of time-dependent scalar fields evolving towards a region with negative potential. In these models, the fundamental cosmological constant is negative, and the universe eventually recollapses in a time-reversal symmetric way. The microscopic description naturally selects a special state for the cosmology. In this framework, physics in the cosmological spacetime is dual to the vacuum physics in a static planar asymptotically AdS Lorentzian wormhole spacetime, in the sense that the background spacetimes and observables are related by analytic continuation. The dual spacetime is weakly curved everywhere, so any cosmological observables can be computed in the dual picture via effective field theory without detailed knowledge of the UV completion or the physics near the big bang. In particular, while inflation may explain the origin of perturbations in the cosmology picture, the perturbations can be deduced from the dual picture without any knowledge of the inflationary potential.<br />Comment: 58 pages, LaTeX, 8 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.11220
Document Type :
Working Paper