Back to Search Start Over

Conjugate Plateau constructions in product spaces

Authors :
Castro-Infantes, Jesús
Manzano, José M.
Torralbo, Francisco
Source :
In: Alarc\'on, A., Palmer, V., Rosales, C. (eds) New Trends in Geometric Analysis. RSME Springer Series, vol 10 (2023), 43-118. Springer, Cham. ISBN: 978-3-031-39915-2
Publication Year :
2022

Abstract

This survey paper investigates, from a purely geometric point of view, Daniel's isometric conjugation between minimal and constant mean curvature surfaces immersed in homogeneous Riemannian three-manifolds with isometry group of dimension four. On the one hand, we collect the results and strategies in the literature that have been developed so far to deal with the analysis of conjugate surfaces and their embeddedness. On the other hand, we revisit some constructions of constant mean curvature surfaces in the homogeneous product spaces $\mathbb{S}^2\times\mathbb{R}$, $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{R}^3$ having different topologies and geometric properties depending on the value of the mean curvature. Finally, we also provide some numerical pictures using Surface Evolver.<br />Comment: 72 pages, 25 figures, 4 tables, 5 ancillary files (to be run using Surface Evolver)

Details

Database :
arXiv
Journal :
In: Alarc\'on, A., Palmer, V., Rosales, C. (eds) New Trends in Geometric Analysis. RSME Springer Series, vol 10 (2023), 43-118. Springer, Cham. ISBN: 978-3-031-39915-2
Publication Type :
Report
Accession number :
edsarx.2203.13162
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/978-3-031-39916-9_3