Back to Search Start Over

Key directions for research and development of superconducting radio frequency cavities

Authors :
Belomestnykh, S.
Posen, S.
Bafia, D.
Balachandran, S.
Bertucci, M.
Burrill, A.
Cano, A.
Checchin, M.
Ciovati, G.
Cooley, L. D.
Semione, G. Dalla Lana
Delayen, J.
Eremeev, G.
Furuta, F.
Gerigk, F.
Giaccone, B.
Gonnella, D.
Grassellino, A.
Gurevich, A.
Hillert, W.
Iavarone, M.
Knobloch, J.
Kubo, T.
Kwok, W. K.
Laxdal, R.
Lee, P. J.
Liepe, M.
Martinello, M.
Melnychuk, O. S.
Nassiri, A.
Netepenko, A.
Padamsee, H.
Pagani, C.
Paparella, R.
Pudasaini, U.
Reece, C. E.
Reschke, D.
Romanenko, A.
Ross, M.
Saito, K.
Sauls, J.
Seidman, D. N.
Solyak, N.
Sung, Z.
Umemori, K.
Valente-Feliciano, A. -M.
Delsolaro, W. Venturini
Walker, N.
Weise, H.
Welp, U.
Wenskat, M.
Wu, G.
Xi, X. X.
Yakovlev, V.
Yamamoto, A.
Zasadzinski, J.
Publication Year :
2022

Abstract

Radio frequency superconductivity is a cornerstone technology for many future HEP particle accelerators and experiments from colliders to proton drivers for neutrino facilities to searches for dark matter. While the performance of superconducting RF (SRF) cavities has improved significantly over the last decades, and the SRF technology has enabled new applications, the proposed HEP facilities and experiments pose new challenges. To address these challenges, the field continues to generate new ideas and there seems to be a vast room for improvements. In this paper we discuss the key research directions that are aligned with and address the future HEP needs.<br />Comment: contribution to Snowmass 2021

Subjects

Subjects :
Physics - Accelerator Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2204.01178
Document Type :
Working Paper