Back to Search
Start Over
Local and 2-local derivations on Lie matrix rings over commutative involutive rings
- Publication Year :
- 2022
-
Abstract
- In the present paper we prove that every 2-local inner derivation on the Lie ring of skew-adjoint matrices over a commutative $*$-ring is an inner derivation. We also apply our technique to various Lie algebras of infinite-dimensional skew-adjoint matrix-valued maps on a set and prove that every 2-local spatial derivation on such algebras is a spatial derivation. We also show that every local spatial derivation on the above Lie algebras is a derivation.<br />Comment: 21 pages. arXiv admin note: text overlap with arXiv:2108.03993, arXiv:1803.06281
- Subjects :
- Mathematics - Rings and Algebras
17B40, 17B65, 46L57, 46L70, 46K70
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2204.03234
- Document Type :
- Working Paper