Back to Search Start Over

Constraining the $^{30}$P($p,\gamma)^{31}$S reaction rate in ONe novae via the weak, low-energy, $\beta$-delayed proton decay of $^{31}$Cl

Authors :
Budner, T.
Friedman, M.
Wrede, C.
Brown, B. A.
José, J.
Pérez-Loureiro, D.
Sun, L. J.
Surbrook, J.
Ayyad, Y.
Bardayan, D. W.
Chae, K.
Chen, A. A.
Chipps, K. A.
Cortesi, M.
Glassman, B.
Hall, M. R.
Janasik, M.
Liang, J.
O'Malley, P.
Pollacco, E.
Psaltis, A.
Stomps, J.
Wheeler, T.
Publication Year :
2022

Abstract

The $^{30}$P$(p,\gamma)^{31}$S reaction plays an important role in understanding nucleosynthesis of $A\geq 30$ nuclides in oxygen-neon novae. The Gaseous Detector with Germanium Tagging was used to measure $^{31}$Cl $\beta$-delayed proton decay through the key $J^{\pi}=3/2^{+}$, 260-keV resonance. The intensity $I^{260}_{\beta p} = 8.3^{+1.2}_{-0.9} \times 10^{-6}$ represents the weakest $\beta$-delayed, charged-particle emission ever measured below 400 keV, resulting in a proton branching ratio of $\Gamma_p / \Gamma = 2.5^{+0.4}_{-0.3} \times 10^{-4}$. By combining this measurement with shell-model calculations for $\Gamma_{\gamma}$ and past work on other resonances, the total $^{30}$P$(p,\gamma)^{31}$S rate has been determined with reduced uncertainty. The new rate has been used in hydrodynamic simulations to model the composition of nova ejecta, leading to a concrete prediction of $^{30}$Si/$^{28}$Si excesses in presolar nova grains and the calibration of nuclear thermometers.<br />Comment: 7 pages, 2 figures, accepted to Physical Review Letters on April 4, 2022

Subjects

Subjects :
Nuclear Experiment
Nuclear Theory

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2204.05444
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.128.182701